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SUMMARY

The coupled streamfuction–temperature equations governing the Darcian flow and convection process in
a fluid-saturated porous enclosure with an isothermal sinusoidal bottom sun face, has been numerically
analyzed using a finite element method (FEM). No restrictions have been imposed on the geometrical
non-linearity arising from the parameters like wave amplitude (a), number of waves per unit length (N),
wave phase (f), aspect ratio (A) and also on the flow driving parameter Rayleigh number (Ra). The
numerical simulations for varying values of Ra bring about interesting flow features, like the transforma-
tion of a unicellular flow to a multicellular flow. Both with increasing amplitude and increasing number
of waves per unit length, owing to the shift in the separation and reattachment points, a row–column
pattern of multicellular flow transforms to a simple row of multicellular flow. A cycle of n celluar and
n+1 cellular flows, with the flow in adjacent cells in the opposite direction, periodically manifest with
phase varying between 0 and 360°. The global heat transfer into the system has been found to decrease
with increasing amplitude and increasing number of waves per unit length. Only marginal changes in the
global heat flux are observed, either with increasing Ra or varying f. Effectively, sinusoidal bottom
surface undulations of the isothermal wall of a porous enclosure reduces the heat transfer into the system.
© 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of natural convection in porous enclosures has generated great interest among
researchers due to its significance in several scientific and engineering applications, e.g. thermal
insulation, geothermal reservoirs, nuclear waste management, grain storage, etc. In building
sciences and thermal insulation engineering, an appreciable insulating effect was derived by
placing porous material in the gap between the cavity walls and in multishield structures of
nuclear reactors between the pressure vessel and the reactor, respectively. Geophysical applica-
tions include modeling the spreading of pollutants (e.g. radio nuclides), water movements in
geothermal reservoirs, enhanced recovery of petroleum reservoirs (Vafai and Haung [1]), etc.
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Works by Chan et al. [2]; Holst and Aziz [3]; Burns et al. [4]; Walker and Homsy [5];
Bejan and Tien [6]; Hickox and Gartling [7]; Prasad and Kulacki [8]; Chang [9]; Bradean
and Ingham [10]; Hetsroni et al. [11], etc., contribute to the understanding of the convec-
tion in porous enclosures.

Enclosure-related studies may be classified into two broad categories, 6iz. enclosures
heated from the side and enclosures heated from below. Various flow patterns are possi-
ble; depending on the imposed thermal boundary conditions, aspect ratio and the geome-
try of the enclosures. A comprehensive review of these studies has been given by Meld
and Bejan [12]. These studies are largely centered on convection from plane surfaces of
rectangular porous enclosures. In practise, one would encounter roughened surfaces in
several technological applications, e.g. solar collectors, condensers in refrigerators, etc.
Large scale non-uniformities are encountered in grain storage containers, electron circuits
dissipating heat (Bhavnani and Bergles [13]; Rees and Pop [14,15]). In fact, in the above
and in many other applications, surfaces are intentionally roughened by the attachment
of baffles, fins or other suitable protrusions to the walls of the enclosures to affect the
heat transfer (Riley [16]; Moulic and Yao [17]). Therefore, it is essential to understand the
effect of surface non-uniformities on convective flow and heat transfer. Bhavnani and
Bergles [13] give a literature review on free convective heat transfer from non-uniform
vertical surfaces in Newtonian fluids. By approximating the small scale roughness as peri-
odic functions, Yao [18]; Watson and Poots [19]; Vajravelu and Sastri [20]; Moulic and
Yao [17], etc., have studied free convection in Newtonian fluids. Studies of Yao [18] and
those of Moulic and Yao [17] indicate a decrease in total Nusselt number when com-
pared with the flat-wall case despite an increase in the surface area.

The only known papers to date which consider the effects of surface non-uniformities
on convection in porous media are those of Rees and Pop [14,15] and Riley [16]. Riley
[16] analyzed the effect of surface undulations approximated with cosine waves in the
vertical porous slot and his results are confined to the conduction zone only. Rees and
Pop [14,15] analyzed natural convection induced by semi-infinite vertical and horizontal
wavy surfaces in saturated porous medium under boundary layer approximations. The
current literature indicates that no attempt has been made to understand the effects of
surface roughness on convection from below in a porous enclosure.

As a first step in this direction, the simulation of flow structure and the natural convec-
tion due to a uniformly heated horizontal wavy wall in a saturated porous enclosure is
attempted by this paper. The wavy wall is assumed to be sinusoidal in structure. The
numerical simulation is carried out by using Bubnov–Galerkin’s finite element method
(FEM) [21]. The computational experiments are carried out for various values of the
parameters and it is observed that, unlike in the boundary layer flow [14], the global heat
flux decreases with increasing values of amplitude. The flow driving buoyancy force is
seen to enhance the heat transfer into the system, and at the same time, the intensified
stream inside the separated region is seen to trap the heat and hinder the heat transfer.
Because of this, only marginal changes could be seen in the heat transfer results with the
increasing Rayleigh number. The comparison of the heat flux from a wavy surface with
that from a flat surface clearly shows that surface undulations decrease the heat flux into
a porous enclosure. Interesting patterns of multicellular flow zones are seen to manifest
for various values of Ra, a, f and N. These results, together with the global heat flux
profiles and isotherms, are clearly depicted through the computer generated plots.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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2. GOVERNING EQUATIONS

The conservation equations for mass, momentum and energy for steady two-dimensional flow
in an homogeneous and isotropic porous medium are
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where r=ra [1−b(T−Ta)].

Figure 1. Porous enclosure with uniformly heated horizontal wavy wall.

Figure 2. Five level graded finite element mesh.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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Figure 3. Mesh independency comparison for 30×30, 40×50, 50×50 and 50×60 quadratic serendipity elements.

Here x and y are the Cartesian co-ordinates, u and 6 are the velocity components in the x-
and y-directions, respectively, T is the temperature, r is the density, p is the pressure, b is the
coefficient of thermal expansion, m is the viscosity of the fluid, K is the permeability constant,
g is acceleration due to gravity and a is the thermal diffusivity constant.

Eliminating the pressure from the momentum equation and expressing the resulting momen-
tum and energy equations in terms of the streamfunction and temperature variables by making
use of the equations u= −(c/(y and 6=(c/(x, we get
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Figure 4. Streamlines for N=1, A=1, a=0.1, f=0°, and (a) Ra=25, (b) Ra=50, (c) Ra=75.
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(1998) Figure 5. Streamlines for N=6, A=1, a=0.1, f=0°, and (a) Ra=25, (b) Ra=50, (c) Ra=75, (d) Ra=100, (e) Ra=150, (f) Ra=200, (g) Ra=300, (h) Ra=400,
(i) Ra=500.
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Figure 6. Isotherms for N=6, A=1, a=0.2, f=0°, and (a) Ra=50, (b) Ra=100, (c) Ra=200, (d) Ra=300, (e) Ra=400.
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Figure 7. Cumulative heat flux vs. Ra for N=6, A=1, a=0.2 and f=0°.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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Figure 8. Streamlines for N=1, A=1, f=0°, Ra=50 and (a) a=0.05, (b) a=0.1, (c) a=0.15.
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and the transformed boundary conditions will be

C=0 on all boundaries
u=1 on Y=a sin(NpX−f)

u=0 on Y=1
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Ã
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Ã
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Å

. (9)

Figure 9. Streamlines for N=6, A=1, Ra=150 and (a) a=0.2, (b) a=0.4, (c) a=0.6, (d) a=0.8.
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Figure 10. Isotherms for N=6, A=1, Ra=150 and (a) a=0.2, (b) a=0.4, (c) a=0.6, (d) a=0.8.

Here X and Y are the dimensionless Cartesian co-ordinates, H is the length of the side walls
of the cavity, L is the length of the bottom wall, A is the aspect ratio, c and C are dimensional
and dimensionless streamfunctions, respectively, T is the temperature, Tw. is the wall tempera-
ture, Ta is the reference temperature, u is the dimensionless temperature and N is the number
of waves considered per unit length of the wall.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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The resulting partial differential equations (7) and (8), along with the hydrodynamic and
thermal boundary conditions equation (9), are solved numerically using Bubnov–Galerkin’s
weighted residual finite element technique.

3. NUMERICAL ANALYSIS

To precisely accommodate the geometrical non-linearity owing to the wavy nature of the wall,
the domain A B C D (Figure 1) has been discretized using isoparametric quadratic serendipity
elements with finer elements near the boundaries.

The Galerkin weighted residual form of the momentum equation and the energy equation
are

Figure 11. (a) Cumulative heat flux vs. a for N=1, A=1, Ra=50, and f=0°. (b) Cumulative heat flux vs. a for
N=6, A=1, Ra=150, f=90°.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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Figure 11 (Continued)&
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Introducing the following discretization of the domain (V@G) and the element level discretized
representation for the streamfunction and temperature distribution

V= e Ve
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into Equations (10) and (11), we obtain the following elemental matrix over a typical element
e as
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(1998) Figure 12. Streamlines for N=1, A=1, Ra=50, a=0.1 and (a) f=60°, (b) f=120°, (c) f=180°, (d) f=240°, (e) f=300°, (f) f=350°.
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Figure 13. Streamlines for N=8, A=1, Ra=200, a=0.4 and (a) f=0°, (b) f=60°, (c) f=120°, (d) f=180°, (e)
f=240°, (f) f=300°.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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and re is the column vector of unknown nodal parameters

re= [Ck
e uk

e]T,

and f e is the known vector which is given by
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Figure 14. Streamlines for N=8, A=1, Ra=100, a=0.7 and (a) f=0°, (b) f=45°, (c) f=90°, (d) f=135°, (e)
f=180°, (f) f=225°, (g) f=270°, (h) f=315°.
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Figure 14 (Continued)
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In the view of the finite element assembly procedure and the prescribed essential and natural
boundary conditions, without any loss of generality, the components of f e can be written as

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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Figure 15. Isotherms for N=8, A=1, Ra=200, a=0.4 and (a) f=0, (b) f=60°, (c) f=120°, (d) f=180°, (e)
f=240°, (f) f=300°.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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Figure 16 (Continued)

Numerical simulations have been carried out on a 50×60 graded finite element mesh as
shown in Figure 2. Newton Raphson’s method, in conjunction with the Frontal solver has
been used to solve the system of algebraic equations resulting from the assembly of the
elemental equations. The results have been obtained to an accuracy of 5×10−4. To ensure the
grid independency of the results, the numerical experiments were carried out on five different
mesh systems consisting of 30×30, 40×40, 40×50, 50×50 and 50×60 elements and the
50×60 mesh has been chosen for accurate computations. The value of cumulative global heat
flux has been plotted for this comparison, as shown in the Figure 3. It clearly shows that the
change in global heat flux becomes negligible as it moves from the 30×30 mesh system to the
50×60 mesh system. Further, the results obtained on the 50×50 and 50×60 mesh systems
look identical.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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f l
1=0, (17)
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where the expression under the overbar denotes the prescribed normal heat flux and Mf is
defined as

Mf=1 if n̄ is parallel to the X-axis and Mf=
1

A2 if n̄ is parallel to the Y-axis.

It is of interest to study the net effect of the geometrical parameters on the free convective heat
transfer in a porous enclosure. For this purpose, the cumulative global heat flux has been
computed from the formula

QX=
& X

0

(n ·9T)
ds(j)

dj
dj, (19)

where n is the outward drawn normal to the wavy surface and s(j) is the arc length along the
surface with the arc length variable, j. The global heat flux can be obtained from the above
expression by taking X=1 in the integral limit.

Figure 16. (a) Cumulative heat flux vs. f for N=1, A=1, a=0.1 and Ra=50. (b) Single wave case: global heat flux
vs. phase. (c) Multiple wave case: global heat flux vs. phase.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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Figure 17. Streamlines for Ra=150, a=0.3, A=1, f=90°, and (a) N=6, (b) N=8, (c) N=10, (d) N=15.

4. RESULTS AND DISCUSSION

The parameters which are found to influence the flow and heat transfer in a porous enclosure
are the modified Rayleigh number, Ra, based on the length of the wavy wall, the amplitude (a)
and the phase (f) of the wave, the number (N) of the waves per unit length of the wavy wall
and aspect ratio (A) of the porous enclosure.

To begin with, the flow and heat transfer process have been analyzed in a porous enclosure
with a single wave (N=1) of amplitude a=0.1, with phase f=0° and aspect ratio A=1 and
for Ra=25, 50, 75. For Ra=50, a flow separation and reattachment on the wavy wall is

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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observed. This is seen from the streamlines in Figure 4. The flow separation and reattachment
can be attributed to the change in pressure gradient, owing to the non-linear geometry of the
bottom wall. With increasing Ra, the separation and reattachment points move closer to the
leading and trailing edges, respectively, and also the size of the secondary circulation zone
increases. In the multiple wave case, the flow has been analyzed for Ra=25 to Ra=500 with
a=0.1, f=0°, A=1 and N=6. Streamlines corresponding to this study are given in Figure
5(a)–(h). At small values of Ra, a primary circulation zone with wavy streamlines close to the
horizontal isothermal undulated wall and small secondary circulation zones in the concavity of
the waves are noticed. With the increase in Ra, several prominent circulation zones appear in
the core of the domain. As Ra increases, unicellular flow transforms to a multicellular flow,
with the flow in adjacent cells in the opposite direction. Streamline profiles suggest that the

Figure 18. Isotherms for Ra=150, a=0.3, A=1, f=90°, and (a) N=6, (b) N=8, (c) N=10, (d) N=15.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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Figure 19. Cumulative heat flux vs. N for Ra=150, a=0.3, A=1, f=90°.

secondary flow regions developing on the wavy wall increase with increasing Ra, slowly spread
into the core of the domain and later get detached and move away from the wavy wall. This
supports the convection-favouring nature of increasing Ra. The transformation of the unicellu-
lar pattern to multicellular pattern may be attributed to the enhancement of buoyancy force
brought in by increasing Ra. As secondary recirculation zones are known to hinder the heat
transfer process, it would be essential to analyze the convection process. In Figure 6(a)–(e),
isotherms for Ra=50 to Ra=400 are presented. Owing to the wavy nature of the bottom
surface, isotherms close to the bottom wall are wavy in nature and this percolates into the rest
of the domain with increasing Ra. Better insight into the convection process can be obtained
from global heat flux plots. So, in Figure 7, cumulative heat flux is plotted against Ra. End
values of the cumulative heat flux plots will give us the global heat flux. From these plots we
find that there are only marginal changes in the global heat flux into the domain with
increasing Ra. Lack of clear trends in the global heat flux can be attributed to the presence of
two competing factors, one favoring and the other opposing the convection process. The
favoring factor is buoyancy force, which is enhanced by increasing Ra and the opposing factor
is a secondary recirculation zone, whose number and size are increased by increasing Ra. The
net effect of these two factors bring about only a marginal change in the global heat flux.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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Figure 20. Streamlines for Ra=150, f=0°, a=0.4, N=8, and (a) A=1, (b) A=2, (c) A=4, (d) A=8.
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The effect of varying amplitude was initially studied for the single wave case at Ra=50,
f=0°, A=1, N=1 and a=0.05, 0.1, 0.15 and the streamlines are presented in Figure
8(a)–(c). The secondary circulation region seen on the wavy wall grows in dimensions of
increasing amplitude. The studies in the multiple wave case has been carried out for a=0.2,
0.4, 0.6, 0.8; Ra=150; f=90; A=1 and N=6. The streamlines corresponding to this study
are presented in Figure 9(a)–(d). At all amplitudes, owing to the Ra at which the simulation
is carried out, a multicellular flow pattern is observed. At small amplitudes, the flow separates
and reattaches on the adjacent walls of the domain in an anticlockwise direction and thereby
gives rise to a row–column pattern of secondary circulation zones. As amplitude increases, the
number of circulation zones remain the same but the flow separates and reattaches on the
bottom surface and thus leads to the formation of circulation zones in a simple row pattern.
It is also observed that at small amplitudes, the flow in the right half of the domain is more
intense and at higher amplitudes, the flow in the central circulation region is more intense.
Isotherms corresponding to this case are presented in Figure 10(a)–(d). The isotherms close to
the wavy wall are wavy and this feature extends deep into the domain with increasing values
of amplitude. The cumulative heat flux plots, corresponding to single and multiple wave cases
are presented in Figure 11(a) and (b). They depict that the total heat flux into the system
decreases with increasing values of amplitude. Here the heat flux from a flat surface is also

Figure 21. Cumulative heat flux vs. A for Ra=150, f=0°, a=0.4, and N=8.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)
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presented, and is seen to be greater than that from a wavy surface. In the single wave case, this
can be attributed to the manifestation of separated flow zones on the wavy wall, and in the
multiple wave case, to the change in the pattern of the recirculation regions.

The streamlines and isotherms (Figure 12(a)–(f)) for varying phases, in the single wave case,
are plotted for Ra=50, A=1, a=0.1 with phase varying between 0 and 360°. As the phase
varies from 0 to 360°, the reattachment point of the separated flow shifts from the bottom wall
to the adjacent walls in the clockwise direction. Consequently, the counterflow zone emerging
on the bottom wall grows in size covering the whole of the domain and leading to the
manifestation of a cycle of uni- and bicellular flows. In the multiple wave case, the simulations
have been carried out at Ra=100, 200; a=0.4, 0.7; A=1. For a=0.4 (Figure 13(a)–(f)),
analogous to one wave case, a shift in the separation and reattachment points to the adjacent
walls in the anticlockwise direction is observed. Also a change is observed in the dimensions
of the cells. For a=0.7 (Figure 14(a)–(h)) again a movement of separation and reattachment
from right-to-left of the domain is observed. Clockwise and anticlockwise circulation zones are
seen to alternatively emerge from the right-bottom corner of the domain and march into the
domain with the shift in the separation and reattachment points. Consequently, a cycle of
bicellular and tricellular prominent circulation zones are seen to manifest in the domain with
the phase varying between 0 and 360°. Isotherms for varying phases are given in Figure
15(a)–(f). Isotherms close to the bottom wall are wavy in nature. Further, in accordance with
the varying phase of the bottom wall, a change in the phase of the wavy isotherms is clearly
noticed. Cumulative heat flux plots for this case study are presented in Figure 16. Figure 16(b)
and (c), corresponding to the global heat flux in the single wave and multiple wave case,
respectively, show that there is a periodic change in the heat flux with increasing phase.

Streamlines for the varying number of waves case are presented in Figure 17(a)–(d) for
N=6, 8, 10, 15 and Ra=150, A=1, and f=90°. With the increase in the number of waves,
a shift in the separation and reattachment points is observed. Consequently, a row–column
array of circulation zones transform into just a row of circulation zones. From the isotherms
presented in Figure 18, it is seen that with the increase in the number of waves, the wavy
nature in the isotherms close to the bottom wall increase. Further, this wavy nature in
isotherms extends deep into the domain. The cumulative heat flux plots for this case are
presented in Figure 19. As the number of waves per unit length increase, a clear decrease in the
heat flux into the system is observed.

Streamlines and isotherms corresponding to the flow and heat convection in porous
enclosures with A=1, 2, 4, 8 at Ra=150, f=0°, and a=0.4 are presented in Figure
20(a)–(d). The plots in Figure 21 present the cumulative global heat flux. It is clearly seen that
the global heat flux into the system decreases as the width of the cavity (l) is decreased,
keeping the height (H) of the cavity fixed.

5. CONCLUSIONS

The effects of surface undulations on natural convection heat transfer in a Darcian fluid-satu-
rated porous enclosure has been numerically analyzed using a FEM. The key observations of
the study are

(a) Manifestations of separation zones on the wavy wall for values of Ra around 50 in the
single wave case and around 25 in the case with six waves per unit length.

(b) Interesting flow features like the transformation of a unicellular flow to a multicellular
flow with increasing Ra and the transformation of a row–column pattern of multicellular flow
to a row pattern of multicellular flow with increasing N or with increasing a are observed.
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(c) Multiple recirculation zones appear to hinder the heat flux into the system. This effect
becomes profound if the separation and reattachment points where to lie on the wavy wall.

(d) Only marginal changes in heat flux is observed with increasing Ra.
(e) Either increasing the amplitude of the wavy wall or increasing the aspect ratio or the

number of waves per unit length is found to decrease the heat flux into the system.
(f) A periodic change in the heat flux is observed with the phase varying between 0 and

360°.

APPENDIX A. NOMENCLATURE

a amplitude of the wavy wall
typical elemente

g gravitational constant
k thermal conductivity

permeabilityK
the length of the wavy wallL
outward drawn unit normal to the wavy surfacen

N number of waves considered per unit length
Nl quadratic interpolation function

pressurep
global heat fluxQ
Rayleigh number: (KgbuwL)/6a based on the length of the wavy wallRa

s(j) arc length of the wavy wall
T temperature

horizontal velocity componentu
6 vertical velocity component

Cartesian co-ordinatesx, y

Greek letters

a thermal diffusivity constant
thermal expansion coefficientb

phase of the wavef

the dimensional stream functionc

C the non-dimensional stream function
u the non-dimensional temperature distribution

viscosity of the fluidm

n fluid kinematic viscosity
arc length variablej

r fluid density
V the domain considered in the problem

the boundary of the domainG

Subscripts

conditions at the ambient mediuma
evaluated at wall conditionw
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Stoffübertrag., 26, 341–349 (1991).
14. D.A.S. Rees and I. Pop, ‘A note on free convection along a vertical wavy surface in a porous medium’, J Heat

Transf., 116, 505–508 (1994).
15. D.A.S. Rees and I. Pop, ‘Free convection induced by a horizontal wavy surface in a porous medium’, Fluid Dyn.

Res., 14, 151–166 (1994).
16. D.S. Riley, ‘Steady two-dimensional thermal convection in vertical porous slot with spatially periodic boundary

imperfections’, Int. J. Heat Mass Transf., 31, 2365–2380 (1988).
17. S.G. Moulic and L.S. Yao, ‘Natural convection along a vertical wavy surface with uniform heat flux’, J Heat

Transf., 111, 1106–1108 (1989).
18. L.S. Yao, ‘Natural convection along a vertical wavy surface’, J Heat Transf., 105, 465–468 (1983).
19. A. Watson and G. Poots, ‘The effect of sinusoidal protrusions on laminar free convection between vertical walls’,

J. Fluid Mech., 49, 33–48 (1971).
20. K. Vajravelu and K.S. Sastri, ‘Free convective heat transfer in a viscous incompressible fluid confined between a

long vertical wall and parallel flat wall’, J. Fluid Mech., 86, 365–383 (1978).
21. O.C. Zienkiesvicz and R.L. Taylor, The Finite Element Method: Basic Formulation and Linear Problems, 4th edn,

McGraw-Hill, New York, 1989.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 633–661 (1998)


